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Abstract— The Differentiated Services framework (DiffServ)
[1] has been proposed to provide multiple Quality of Service
(QoS) classes over IP networks. A network supporting multiple
classes of service also requires a differentiated pricing structure.
In this work, we propose a pricing scheme in a DiffServ
environment based on the cost of providing different levels of
quality of service to different classes, and on long-term demand.
Pricing of network services dynamically based on the level of
service, usage, and congestion allows a more competitive price
to be offered, allows the network to be used more efficiently,
and provides a natural and equitable incentive for applications
to adapt their service contract according to network conditions.
We develop a DiffServ simulation framework to compare the
performance of a network supporting congestion-sensitive pricing
and adaptive service negotiation to that of a network with a
static pricing policy. Adaptive users adapt to price changes by
adjusting their sending rate or selecting a different service class.
We also develop the demand behavior of adaptive users based on
a physically reasonable user utility function. Simulation results
show that a congestion-sensitive pricing policy coupled with user
rate adaptation is able to control congestion and allow a service
class to meet its performance assurances under large or bursty
offered loads, even without explicit admission control. Users are
able to maintain a stable expenditure. Allowing users to migrate
between service classes in response to price increases further
stabilizes the individual service prices. When admission control is
enforced, congestion-sensitive pricing still provides an advantage
in terms of a much lower connection blocking rate at high loads.

I. I NTRODUCTION

The Differentiated Services framework (DiffServ) [1] has
been proposed to provide multiple Quality of Service (QoS)
classes over IP networks. Two types of Per-Hop-Behavior
(PHB) are proposed: Expedited Forwarding (EF) [2] and
Assured Forwarding (AF) [3]. The EF PHB is defined as a
forwarding treatment where the departure rate of an aggre-
gate’s packets from any DiffServ node must equal or exceed
a configurable rate. For AF service, four classes with three
levels of drop precedence in each class are defined for general
use.

A network supporting multiple classes of service also re-
quires a differentiated pricing structure, rather than the flat-
fee pricing model adopted by virtually all current Internet
services. While network tariff structures are often dominated
by business and marketing arguments rather than costs, we
believe it is worthwhile to understand and develop a cost-based
pricing structure as a guide for actual pricing. In economically
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viable models, the difference in the charge between different
service classes would presumably depend on the difference in
performance between the classes, and should take into account
the average (long-term) demand for each class. In general,
the level of forwarding assurance of an IP packet in DiffServ
depends on the amount of resources allocated to a class the
packet belongs to, the current load of the class, and in case of
congestion within the class, the drop precedence of the packet.
Also, when multiple services are available at different prices,
users should be able to demand particular services, signal the
network to provision according to the requested quality, and
generate accounting and billing records. One of the two main
goals of our work is to develop a pricing scheme in a DiffServ
environment based on the cost of providing different levels
of quality of service to different classes, and on long-term
demand.

DiffServ supports services which involve a traffic contract
or service level agreement (SLA) between the user and the
network. If the agreement, including price negotiation and
resource allocation are set statically (before transmission),
pricing, resource allocation and admission control policies
(if any) have to be conservative to be able to meet QoS
assurances in the presence of network traffic dynamics. Pricing
of network services dynamically based on the level of service,
usage, and congestion allows a more competitive price to be
offered, and allows the network to be used more efficiently.
Differentiated and congestion-sensitive pricing also provides a
natural and equitable incentive for applications to adapt their
service contract according to network conditions. A number
of adaptation schemes have been proposed for multimedia
applications to dynamically regulate the source bandwidth
according to the existing network conditions (a survey of this
work is given in [4]).

The second main goal of our work is to integrate our pricing
scheme with a dynamic pricing and service negotiation envi-
ronment. In this environment, service prices have a congestion-
sensitive component in addition to the long-term, relatively
static price. Some or all users are adaptation-capable, and
adapt to price changes by adjusting their sending rate or select-
ing a different service class. Users with stringent bandwidth
and QoS requirements maintain a high quality by paying more,
while adaptation-incapable applications use services offering
a static price. We develop the demand behavior of adaptive
users based on a physically reasonable user utility function.

In our simulations, prices and services are negotiated
through a Resource Negotiation and Pricing (RNAP) protocol
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and architecture, presented in earlier work [5]. RNAP enables
the user to select from available network services with differ-
ent QoS properties and re-negotiate contracted services, and
enables the network to dynamically formulate service prices
and communicate current prices to the user. In RNAP, resource
commitments are typically made for short “negotiation” in-
tervals, instead of indefinitely, and prices may vary for each
interval.

Using RNAP and an extended version of an existing Diff-
Serv implementation, we develop a simulation framework to
compare the performance of a network supporting congestion-
sensitive pricing and adaptive service negotiation to that of a
network with a static pricing policy. We also study the stability
of the dynamic pricing and service negotiation mechanisms.
We evaluate the system performance and perceived benefit (or
value-for-money) under the dynamic and static systems. We
also study the relative effects on system performance of rate
adaptation, dynamic load balancing between service classes
and admission. Although the simulation framework is based
on the RNAP model, we try to derive results and conclusions
applicable to static and congestion-driven, dynamic pricing
schemes in general.

This paper is organized as follows. Section II develops
a physically realistic user utility function to represent user
demand behavior in response to price changes. Section III
discusses our proposed pricing model in detail. Section IV
summarizes our earlier work on RNAP and particularly how
it supports network pricing. In section V we describe our
simulation model, and in section VI we discuss simulation
results. We describe some related work in section VII, and
summarize our work in section VIII.

II. U SERADAPTATION

In a network with congestion dependent pricing and dy-
namic resource negotiation (through RNAP or some other sig-
naling protocol),adaptiveapplications with a budget constraint
will adjust their service requests in response to price variations.
In this section, we discuss how a set of user applications
performing a given task (for example, a video conference)
adapt their sending rate and quality of service requests to
the network in response to changes in service prices, so as
to maximize the benefit orutility to the user, subject to the
constraint of the user’s budget.

Although we focus on adaptive applications as the ones best
suited to a dynamic pricing environment, the RNAP frame-
work does not require adaptation capability. Applications may
choose services that provide a fixed price and fixed service
parameters during the duration of service. Generally, the long-
term average cost for a fixed-price service will be higher,
since it uses network resources less efficiently. Alternatively,
applications may use a service with usage-sensitive pricing,
and maintain a high QoS level, paying a higher charge during
congestion.

We consider a set of user applications, required to perform
a task ormission. The user would like to determine a set of
transmission parameters (sending rate and QoS parameters)
from which it can derive the maximum benefit, subject to his

budget. We assume that the user defines quantitatively, through
a utility function, the perceived monetary value (say, 15
cents/minute) provided by the set of transmission parameters
towards completing the mission.

Consumers in the real world generally try to obtain the best
possible “value” for the money they pay, subject to their budget
and minimum quality requirements; in other words, consumers
may prefer lower quality at a lower price if they perceive
this as meeting their requirements and offering better value.
Intuitively, this seems to be a reasonable model in a network
with QoS support, where the user pays for the level of QoS he
receives. In our case, the “value for money” obtained by the
user corresponds to the surplus between the utilityU(·) with
a particular set of transmission parameters (since this is the
perceived value), and the cost of obtaining that service. The
goal of the adaptation is to maximize this surplus, subject to
the budget and the minimum and maximum QoS requirements.

We now consider the simultaneous adaptation of transmis-
sion parameters of a set ofn applications performing a single
task. The transmission bandwidth and QoS parameters for each
application are selected and adapted so as to maximize the
mission-wide “value” perceived by the user, as represented
by the surplus of thetotal utility, Û , over the total costC.
We can think of the adaptation process as the allocation and
dynamic re-allocation of a finite amount of resources between
the applications.

In this paper, we make the simplifying assumption that for
each application, a utility function can be defined as a function
only of the transmission parameters of that application, inde-
pendent of the transmission parameters of other applications.
Since we consider utility to be equivalent to a certain monetary
value, we can write the total utility as the sum of individual
application utilities :

Û =
∑

i

[U i(xi(Tspec, Rspec)] (1)

wherexi is the transmission (Tsepc) and quality of service pa-
rameter (Rspec) tuple for theith application. The optimization
of surplus can be written as

max
∑

i

[U i(xi) − Ci(xi)]

s. t.
∑

i

Ci(xi) ≤ b, xi
min ≤ xi ≤ xi

max (2)

wherexi
min andxi

max represent the minimum and maximum
transmission requirements for streami, Ci is the cost of the
type of service selected for streami at requested transmission
parameterxi, andb is the budget of the user.

In practice, the application utility is likely to be measured
by user experiments and known at discrete bandwidths, at one
or a few levels of loss and delay, possibly corresponding to a
subset of the available services; at the current stage of research,
some possible services are guaranteed [6] and controlled-load
service [7] under the int-serv model, Expedited Forwarding
(EF) [2] and Assured Forwarding (AF) [3] under diff-serv. In
this case, it is convenient to represent the utility as a piecewise
linear function of bandwidth (or a set of such functions).
A simplified algorithm is proposed in [8] to search for the
optimal service requests in such a framework.
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We can make some general assumptions about the utility
function as a function of the bandwidth (can be equivalent
bandwidth [9]), at a fixed value of loss and delay. A user
application generally has a minimum bandwidth requirement.
It also associates a certain minimum value with a task, which
may be regarded as an “opportunity” value, and this is the per-
ceived utility when the application receives just the minimum
required bandwidth. The user terminates the application if its
minimum bandwidth requirement can not be fulfilled, or when
the price charged is higher than the opportunity value derived
from keeping the connection alive. Also, user experiments
reported in the literature [10][11] suggest that utility functions
typically follow a model of diminishing returns to scale, that
is, the marginal utility as a function of bandwidth diminishes
with increasing bandwidth. Hence, a utility function can be
represented in a general form as a function of bandwidth as:

U(x) = U0 + w log
x

xm
(3)

wherexm represents the minimum bandwidth the application
requires,w represents the sensitivity of the utility to band-
width, and U0 is the monetary “opportunity” that the user
perceives at the lowest QoS level.

The utility function is also sensitive to network transmission
parameters such as loss and delay. In our work, we rely
on the experimental results in [12] which show that users’
perceived quality for interactive audio decreases almost lin-
early with either delay or loss, with a minimum acceptable
quality requirement. More subjective tests are needed for
other application types. Currently, we assume a similar linear
dependence for all applications. Accordingly, we represent the
utility function as:

U(x) = U0 + w log
x

xm
− kdd − kll, for x ≥ xm, (4)

wherekd andkl represent respectively the user’s sensitivity to
delay and loss. In some cases, the user’s perceived sensitivity
may depend on the bandwidth used. For example, tolerance
to delay and loss will be different for different speech codecs.
Since we are not assuming any particular application model,
we assume users’ delay and loss sensitivity are bandwidth
independent in our simulations. A user with a higher sensitivity
to delay or loss will tend to select a higher service class
rather than request more bandwidth. If the utilities of all the
applications are represented in the format of equation 4, the
optimization process for a system with multiple applications
can be represented as:

max
∑

i

[U i
0 + wi log

xi

xi
m

− ki
dd − ki

l l − pixi]

s. t.
∑

i

pixi ≤ b, xi ≥ xi
m,∀i, d ≤ D, l ≤ L (5)

where pi is the price of the service class selected by the
application i, D and L are respectively the loss and delay
bound of an application, above which the application no longer
functions usefully.

It is possible to represent the above optimization problem as
a Lagrangian and solve it. However, we assume the availability

of only a few different loss and delay levels corresponding to
different service classes, and accordingly use a more heuristic
method.

The optimization involves assigning a service class and a
bandwidth to each applicationi. For a particular assignment
of service classes to applications, if the user can obtain the
optimal bandwidth distribution according to equation 5 at a
cost below his budget, then the bandwidth allocation that
maximizes the perceived surplus for an application can be
shown to be:

xi =
wi

pi
(6)

Hence,wi represents the money a user would spend based
on its perceived value for an application.The above bandwidth
distribution is considered for all possible service class assign-
ments (constrained by application requirements and budget),
and the one giving the highest total surplus is used.

If there is no set of service class assignments for which the
optimal distribution of equation 6 can be obtained at a cost
below the budget, the total budget is first distributed to the
component applications according to their relative bandwidth
sensitivitywi. That is, each application receives a budget share
bi such that

bi = b
wi

∑
k

wk
(7)

Each application is then allocated a servicei and bandwidth
xi = bi

pi which maximizes its individual surplus according to
equation 4.

The discussion so far assumes that each pricepi is per
unit average bandwidth. A price based on unit equivalent
bandwidth [13] may be fairer since it takes into account the
burstiness of user traffic. In this case, the user adaptation of
the source rate is more complicated. If effective bandwidth is
used, a user could calculate a new average bandwidth when
the price increases. Alternatively, it could introduce additional
buffering at the source to reduce its burstiness, at the cost of
a higher delay, thus reducing the effective bandwidth.

III. PRICING STRATEGIES

A few pricing schemes are widely used in the Internet today
[14]: access-rate-dependent charge (AC), volume-dependent
charge (V), or the combination of the both (AC-V). An
AC charging scheme is usually one of two types: allowing
unlimited use, or allowing limited duration of connection, and
charging a per-hour fee for additional connection time. Sim-
ilarly, AC-V charging schemes normally allow some amount
of volume to be transmitted for a fixed access fee, and then
impose a per-volume charge. Although time-of-day dependent
charging is commonly used in telephone networks, it is not
generally used in the current Internet. User experiments [15]
indicate that usage-based pricing is a fair way to charge people
and allocate network resources. Both connection time and the
transmitted volume reflect the usage of the network. Charging
based on connect-time only works when resource demands per
time unit are roughly uniform. Since this is not the case for
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Internet applications and across the range of access speeds,
we only consider volume-based charging.

In this paper, we study two kinds of volume-based pricing:
a fixed-price (FP) policy with a fixed unit volume price, and
a congestion-price-based adaptive service (CPA) in which the
unit volume price has a congestion-sensitive component. In the
fixed price model, the network charges the user per volume
of data transmitted, independent of the congestion state of the
network. The per-byte charge can be the same for all service
classes (“flat”, FP-FL), depend on the service class (FP-PR),
depend on the time of day (FP-T) or a combination of time-
of-day and service class (FP-PR-T).

If the price does not depend on the congestion condi-
tions in the network, customers with less bandwidth-sensitive
applications have no motivation to reduce their traffic as
network congestion increases. As a result, either the service
request blocking rate will increase at the call admission control
level, or the packet delay and dropping rate will increase at
the queue management level. Having a congestion-dependent
component in the service price provides a monetary incentive
for adaptive applications to adapt their service class and/or
sending rates according to network conditions. In periods of
resource scarcity, quality sensitive applications can maintain
their resource levels by paying more, and relatively quality-
insensitive applications will reduce their sending rates or
change to a lower class of service. The total price consists
of a congestion-dependent component and a fixed volume-
based charge. The fixed volume-based charge has the same
4 charging modes as in FP, giving the pricing models CP-FL,
CP-PR, CP-T, CP-PR-T.

A. Proposed Pricing Scheme

We assume that routers support multiple service classes
and that each router is partitioned to provide a separate link
bandwidth and buffer space for each service, at each port.
We use the framework of the competitive market model [16].
The competitive market model defines two kinds of agents:
consumers and producers. Consumers seek resources from
producers, and producers create or own the resources. The
exchange rate of a resource is called its price. The routers
are considered the producers and own the link bandwidth and
buffer space for each output port. The flows (individual flows
or aggregate of flows) are considered consumers who consume
resources. The congestion-dependent component of the service
price is computed periodically, with a price computation
interval τ . The total demand for link bandwidth is based
on the aggregate bandwidth reserved on the link for a price
computation interval, and the total demand for the buffer space
at an output port is the average buffer occupancy during the
interval. The supply bandwidth and buffer space need not be
equal to the installed capacity; instead, they are the targeted
bandwidth and buffer space utilization. The congestion price
will be levied once demands exceeds a provider-set fraction
of the available bandwidth or buffer space. We now discuss
the formulation of the fixed charge, which we decompose into
holding chargeandusage charge, and the formulation of the
congestion charge.

1) Holding Charge: A service may enforce admission
control to ensure some level of performance. In this case,
the applications admitted into the network will impose some
potential cost by depriving other applications the opportunity
to be admitted. Hence, it is fair to charge the admitted appli-
cations a holding price. The holding charge can be calculated
based on the following consideration. If a particular flow or
flow-aggregate does not utilize the resources (buffer space
or bandwidth) set aside for it, we assume that the scheduler
allows the resources to be used by excess traffic from a lower
level of service. The holding charge reflects revenue lost by the
provider because instead of selling the allotted resources at the
usage charge of the given service level (if all of the reserved
resources were consumed) it sells the reserved resources at the
usage charge of a lower service level. The holding price (pj

h)
of a service classj is therefore set to be proportional to the
difference between the usage price for that class and the usage
price for the next lower service class.

The holding price can be represented as:

pj
h = αj(pj

u − pj−1
u ), (8)

whereαj is a scaling factor related to service classj. The
holding chargecij

h (n) when the customeri reserves a band-
width rij(n) from classj is given by:

cij
h (n) = pj

hrij(n)τ j (9)

whereτ j is the negotiation period for classj. rij(n) can be a
bandwidth requirement specified explicitly by the customeri,
or estimated from the traffic specification and service request
of the customer.

2) Usage Charge:The usage charge is determined by the
actual resources consumed, the average user demand, the level
of service guaranteed to the user, and the elasticity of the
traffic. The usage price (pu) will be set such that it allows a
retail network to recover the cost of the purchase from the
wholesale market, and various fixed costs associated with the
service. In a network supporting multiple classes of service,
the difference in the charge between different service classes
would presumably depend on the difference in performance
between the classes. The model we consider is a network
supportingJ classes of services, the service price for class
j is pj

u, the long time user bandwidth demand is known (e.g.,
through statistics) and can be represented asxj(p1

u, p2
u, ..., pJ

u),
and the cost of having capacityC during one unit of time
is f(C). The provider’s decision problem is to choose the
optimal prices for each class that optimize its profit:

max
p

j
u

[

J∑

j

xj(p1
u, p2

u, ..., pJ
u)pj

u − f(C)],

subject to: r(xj(p1
u, p2

u, ..., pJ
u)) ≤ R, j ∈ J (10)

wherer represents the bandwidth requirement for all classes,
and R is the total bandwidth availability of the network.
Assuming users choose service classes independently, the total
demand for a class over a long enough time period depends
only on the price for that class. If we assume the users have
the utility functions of Section II, the total demand of service
class j can be represented as a constant elasticity model:
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xj(pj
u) = Aj/pj

u, which varies inversely with the price of
the service class.Aj reflects the total willingness to pay of
users belonging to service classj.

Service pricing for differentiated service

DiffServ supports SLA negotiation between the user and the
network. An SLA generally includes traffic parameters, which
describe the user’s traffic profile, and performance parameters,
which characterize the level of performance that the network
promises to provide to the conforming part of the user’s traffic.
A widely used descriptor for a user’s traffic profile consists of
a peak rate, a sustainable rate, and a maximum burst tolerance.
The generally considered QoS parameters are delay and loss.
Mechanisms, such as weighted fair queuing (WFQ) and class
based queuing (CBQ) can be used to provision resources for
different service classes. In general, a class with lower load
leads to lower delay expectation. A higher level of service
class is expected to have a lower average load, and hence lower
average delay. If we do not consider the difference in element
costs for different classes, charging services proportional to
their individual expected load seems to reasonably reflect the
cost of providing the services and the differences between their
performance. Assuming that unit bandwidth of a service class
would be charged a basic ratepbasic if all its bandwidth were
used, and the expected load ratio of service classj is ρj , the
unit bandwidth price for service classj can then be estimated
as pj

u = pbasic/ρj. The effective bandwidth consumption of
an application with ratexij can be represented asxij/ρj.
For constant elasticity demand,xj(pj

u) = Aj/pj
u, and the

effective bandwidth consumption isAj/(pj
uρj). Then the price

optimization problem of equation 10 can be written as:

max
p

j
u

[

J∑

j

Aj

pj
u

pj
u − f(C)], pj

u =
pbasic

ρj
,

subject to:
J∑

j

Aj

pj
uρj

≤ C (11)

The Lagrangian for the problem can be represented as:

max
pbasic

[

J∑

j

Aj + λ(C −
∑J

j
Aj

pbasic
) − f(C)] (12)

The optimal solution is:

pbasic =

∑J

j
Aj

C
, pj

u =
pbasic

ρj
=

∑J

j
Aj

Cρj
(13)

The bandwidth provisioned for each service class will be
given by Aj/pbasic, and is hence proportional to total user
willingness to pay for that class. The usagechargecij

u (n) for
classj over a periodn in which vij(n) bytes were transmitted
is given by:

cij
u (n) = pj

uvij(n) (14)

3) Congestion Charge:A simple usage-based charging
scheme monitors the data volume transmitted and in principle
charges users based on their average rate. Charging according
to the mean rate, though encouraging the user to use network
bandwidth more efficiently, does not discourage users from
selecting large traffic contracts and sending the worst-case

traffic allowed by their contract, which create problems for
network traffic management. An appropriate pricing scheme
should provide users the incentives to select traffic contracts
that reflect their actual needs. Effective bandwidth [9][17] and
pricing based on effective bandwidth [13] have been proposed
in a multiple-service-class environment. However, effective
bandwidth normally accounts for the worst case traffic subject
to the traffic profile of the SLA. The contract for typical users
has an effective bandwidth much larger than the mean rate.
Provisioning based on equivalent bandwidth is not economi-
cally efficient in a DiffServ environment. Performance guaran-
tees in DiffServ are qualitative and can be very loose. This may
make it difficult to evaluate the equivalent bandwidth. Also,
DiffServ does not allocate resources to applications based
on their effective bandwidth. Therefore, it appears unfair to
charge users based on their profile declaration only, though
the charge should take the profile into account. To encourage
users to reduce their resource requirements under network
resource contention, we propose an additional congestion-
sensitive price component under these conditions. The general
network resources considered are bandwidth and buffer space.
Two kinds of congestion pricing can be considered: pricing
when the expected load bound is exceeded, or pricing when
buffer occupancy reaches certain level. In the first case, when
the average demand for a certain class exceeds a threshold, an
additional congestion price is charged all users of that class.

In the case of priority dropping for AF class, the dropping
precedence is only considered when the buffer occupancy
reaches different thresholds. The same thresholds can be
associated with different congestion or buffer prices. When
each threshold is reached, user packets with the corresponding
precedence level begin to be dropped with a certain probability,
and users with higher precedence levels are charged the
additional buffer price. Therefore, the higher precedence users
pay the sum of buffer prices corresponding to all the exceeded
thresholds. During congestion, lower precedence users will
suffer lost packets, or reduce their rate, or smoothen their
traffic at the source (at the cost of higher delay due to
buffering), or change to a higher precedence and pay a higher
price.

Both kinds of congestion price for a service class can be
calculated as an iterative tˆatonnement process [16]:

pj
c(n) = min[{pj

c(n − 1) + σj(Dj , Sj)(Dj − Sj)/Sj , 0}+, pj
max]
(15)

where Dj and Sj represent the current total demand and
supply respectively, andσj is a factor used to adjust the
convergence rate.σj may be a function ofDj andSj; in that
case, it would be higher when congestion is severe.Dj andSj

will be different for bandwidth and buffer space congestion.
The router begins to apply the congestion charge only when
the total demand exceeds the supply. Even after the congestion
is removed, a non-zero, but gradually decreasing congestion
charge is applied until it falls to zero to protect against further
congestion. In our simulations, we also used a price adjustment
threshold parameterθj to limit the frequency with which
the price is updated. The congestion price is updated if the
calculated price increment exceedsθjpj

c(n−1). The maximum
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congestion price is bounded by thepj
max. When a service class

needs admission control, all new arrivals are rejected when the
price reachespmaxj . If pj

c reachespj
max frequently, it indicates

that more resources are needed for the corresponding service,
or usage price for a class needs to be adjusted to reflect the
new demand statistics. For a periodn, the total congestion
charge is given by

cij
c (n) = pj

c(n)vij(n). (16)

Based on the price formulation strategy described above, a
router arrives at a cost structure for a particular RNAP flow or
flow-aggregate at the end of each price update interval. The
total charge for a session is given by

cij
s =

N∑

n=1

[pj
hrij(n)τ j + (pj

u + pj
c(n))vij(n)] (17)

whereN is the total number of intervals spanned by a session.
In some cases, the network may set the usage charge to

zero, imposing a holding charge for reserving resources only,
and/or a congestion charge during resource contention. Also,
the holding charge would be set to zero for services without
explicit resource reservation or admission control, for example,
best effort service. Since the re-negotiation of network services
will generally be driven by price changes, the stability of the
negotiation process is discussed in related work with a greater
focus on pricing [18].

IV. RESOURCENEGOTIATION THROUGH RNAP

The pricing algorithms and adaptation framework presented
in this paper do not depend on any particular network ar-
chitecture or protocol. However in this paper, we simulated
our results in an environment supporting dynamic service
negotiation through the Resource Negotiation and Pricing
protocol (RNAP) [5][8], using a centralized (RNAP-C) net-
work management architecture. We first briefly review the
RNAP framework, and then describe the pricing and charge
formulation process used.

In the RNAP framework, we assume that the network
makes services with certain QoS characteristics available to
user applications, and charges prices for these services that,
in general, vary with the availability of network resources.
Network resources are obtained by user applications through
negotiation between the Host Resource Negotiator (HRN) on
the user side, and a Network Resource Negotiator (NRN)
acting on behalf of the network. The HRN negotiates on behalf
of one or multiple applications belonging to a multimedia
system. In an RNAP session, the NRN periodically provides
the HRN updated prices for a set of services. Based on this
information and current application requirements, the HRN
determines the current optimal transmission bandwidth and
service parameters for each application. It re-negotiates the
contracted services by sending aReservemessage to the NRN,
and receiving aCommitmessage as confirmation or denial.

The HRN only interacts with the local NRN. If its appli-
cation flows traverse multiple domains, resource negotiations
are extended from end to end by passing RNAP messages
hop-by-hop from the first-hop NRN until the destination

Dest Next Hop

Domain Routing Table

R1

      

B2

Next Hop

R2

Next Hop

B1 R1 R2

B2

R2

(C, BW, Q, P) (C, BW, Q, P)

R1

Resource Table

R1

B1

R2

(C, BW, Q, P)

B2

1, 3, 30, 2

1, 2, 30, 1

1, 3, 30, 1

NRN

B1
R1

R2

B2

B3

B4

BW: average bandwidth (Mb)

Table 1 Table 2

COPS messages

Step2: accumulate price along

Step1: determine a path (Table 1)

the path (Table 2)

Step 3: send total price ($4/Mb)

C: Service class

Q:average queue length 
P: price ($/Mb)

B3

B4

Fig. 1. Price formulation in RNAP-C

network NRN, and vice versa. End-to-end prices and charges
are computed by accumulating local prices and charges as
QuotationandCommitmessages travel hop-by-hop upstream
towards the HRN.

The NRN maintains local state information for a domain for
charging and other purposes. It makes the admission decision
and decides the price for a service, based on the service
specifications alone, or by also taking into account routing
and configuration policies, and network load. In the latter case,
the NRN sits at a router that belongs to a link-state routing
domain (for example an OSPF area) and has an identical link
state database as other routers in the domain. This allows it
to calculate all the routing tables of all other routers in the
domain using Dijkstra’s algorithm.

The NRN maintains a domain routing table which finds
any flow route that either ends in its own domain, or uses its
domain as a transit domain (Fig. 1). The domain routing table
will be updated whenever the link state database is changed. A
NRN also maintains a resource table, which allows it to keep
track of the availability and dynamic usage of the resources
(bandwidth, buffer space). In general, the resource table stores
resource information for each service provided at a router. The
resource table allows the NRN to compute a local price at each
router (for instance, using the usage-based pricing strategy
described in Section III). For a particular service request, the
NRN first looks up the path on which resources are requested
using the domain routing table, and then uses the per-router
prices to compute the accumulated price along this path. The
resource table also facilitates monitoring and provisioning of
resources at the routers. To enable the NRN to collect resource
information, routers in the domain periodically report local
state information (for instance, average buffer occupancy and
bandwidth utilization) to the NRN. In this paper, we extend
COPS [19] for this purpose.

To compute the charge for a flow, ingress routers maintain
per-flow (or aggregated flow from neighboring domain) state
information about the data volume transmitted during a ne-
gotiation period. This information is periodically transmitted
to the NRN, allowing the NRN to compute the charge for
the period. The NRN uses the computed price and charge to
maintain charging state information for each RNAP session.

A network domain manages its own pricing scheme (which
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may be congestion sensitive or static) independent of other
domains, and will have its own per unit resource costs for each
class. When an user flow traverses multiple domains, RNAP
messaging collates pricing and billing information from each
domain and determine the total price/charge for the user.

For reducing the overhead due to per-flow RNAP mes-
sage processing and storage, we consider a sink-tree based
aggregation scheme in [8]. The RNAP messages and state
information are aggregated in the core networks, allowing data
measurement and charging to be at much larger granularity.

V. SIMULATION MODEL

In this section, we describe our simulation model for the
CPA and FP policies. We simulate a single DiffServ service
domain, under which resources are not explicitly reserved
for each flow. We simulate the service performance with or
without admission control from the domain. User resource
requirements are declared explicitly through RNAP, allowing
admission control to be enforced if required in an experiment.
The individual and total user resource demands are also
obtained through measurement. Price and network statistics
are signaled to users through RNAP.

We used thenetwork simulator[20] environment to simulate
two network topologies, shown in Fig. 2 and Fig. 3. Topology
1 contains two backbone nodes, six access nodes, and twenty-
four end nodes. Topology two contains five backbone nodes,
fifteen access nodes, and sixty end nodes. Topology two was
also used in [21]. All links are full duplex and point-to-point.
The links connecting the backbone nodes are 3 Mb/s, the links
connecting the access nodes to the backbone nodes are 2 Mb/s,
and the links connecting the end nodes to the access nodes
are 1 Mb/s. At each end node, there is a fixed numberNs of
sending users. We use topology 1 in most of our simulations to
allow congestion to be simulated at a single bottleneck node,
and use topology 2 to illustrate the CPA performance under a
more general network topology [18].

We modified the DiffServ module developed by Sean Mur-
phy to support dynamic SLA negotiation, and monitor the user
traffic at ingress point. A Weighted-Round-Robin scheduler
is modeled at each node, with weights distributed equally
among EF, AF, and Best Effort (BE) classes. Although the
DiffServ proposals mention 4 AF classes with three levels of
drop precedence in each, we only simulated one AF class to
make the simulations less resource-intensive, since this does
not affect the general results in any way. Three different buffer
management algorithms are used for different DiffServ classes
- tail-dropping for EF, RED-with-In-Out [22] for AF, and
Random Early Detection [23] for the BE traffic. The default
queue length for EF, AF and BE are set respectively to 50, 100,
200 packets. Other parameters are set to the default values in
the network simulatorimplementation.

A combination of exponential on-off and Pareto on-off
traffic sources are used in the simulation. Unless otherwise
specified, the traffic consists of 50% of each for all the service
classes, and the on time and off time are both set to 0.5
seconds. The shape parameter for Pareto sources is set to
1.5. The mean packet size is set to 200 bytes. The traffic

A1

A2

A3 A4

A5

A6

B1 B2
3 Mb/s

2 Mb/s1 Mb/s

ReceiversSenders

Fig. 2. Simulation network topology 1

A1

A2

A3

B1

B2 B3

B4

A10

A11

A12

B5

A4 A5 A6 A7 A8 A9

A15 A14 A13

3 Mb/s

2 Mb/s

1 Mb/s

Fig. 3. Simulation network topology 2

conditioners are configured with one profile for each traffic
source, with peak rate and bucket size set to the 0n-off source
peak rate and maximum amount of traffic sent during an on
period respectively for both EF and AF classes.

We also characterize the system load byburst indexand
offered load. The burst index is defined asOffTime/(OnTime
+ OffTime) for both types of On-Off sources. The offered load
for a service class is defined as the ratio between the total user
resource requirement for a service type, and the configured
class capacity at the bottleneck. Under the FP policy, the
total user resource requirement is also the actual resource
demand from all the users. Under the CPA policy, the total
user resource requirement is what the total resource demand
would be if there were no resource contention at the bottleneck
and the network did not impose an additional congestion-
dependent price.

User requests are generated according to a Poisson arrival
process and the lifetime of each flow is exponentially dis-
tributed with an average length of 10 minutes. In topology
1, users from the sender side independently initialize unidi-
rectional flows towards randomly selected receiver side end
nodes.Ns flows will be initialized at one node. At most12Ns

flows (60 sessions withNs set to 5) can run simultaneously
in the whole network. In topology 2, all the users initialize
unidirectional flows towards randomly selected end nodes. At
most60Ns users (360 sessions withNs set to 6) are allowed
to run simultaneously in the whole network.

For ease of understanding, all prices in this section are
given in terms of price per minute of a 64 kb/s transmission,
currently equivalent to a telephone call. The basic price
charged by the FP policy, and the basic usage price charged
by CPA (pbasic), are both set to $0.08/min. We set the target
average load of the EF class at 40%, the AF class at 60%,
and the BE class at 90%. Therefore, based on the pricing
strategy proposed in Section III, the usage price for EF, AF and
BE classes are set respectively as $0.20/min, $0.13/min, and
$0.089/min. When admission control is enforced, the holding
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price for the CPA policy is correspondingly set to $0.067/min
for EF class, and $0.044/min for AF class.

Congestion pricing is applied when instantaneous usage
exceeds the target load threshold of each class or when the
loss or delay exceeds1/3 of the bounds at a node associated
with the class (delay bound of 2 ms, 5 ms, and 100 ms
respectively for EF, AF, and BE, and loss bounds of10−6,
10−4 and10−2 respectively). The price adjustment procedure
is also controlled by a pair of parameters, the price adjustment
stepσ from equation 15 and the price adjustment threshold
parameterθ, defined in Section III. Unless otherwise specified,
values ofσ = 0.06 andθ = 0.05 are used.

The users are assumed to have the general form of the
utility function shown in Section II. At the beginning of each
experiment, the user population is divided into users of the EF,
AF and BE classes, although in some experiments they are
allowed to adapt to price changes by switching to a different
class.

For EF users, the elasticity factor factorw (which is also
the user’s willingness to pay), is uniformly distributed between
$0.13/min and $0.40/min for a 64 kb/s bandwidth. For AF
and BE users, it is uniformly distributed between $0.09/min
and $0.26/min, and $0.06/min and $0.18/min respectively.
The minimum delay and loss requirements for each type of
users are set to be the same as the expected performance
bound of the corresponding service class. The opportunity cost
parameterU0 is set to the amount a user is willing to pay
for its minimum bandwidth requirement, and is hence given
by U0 = phigh · xmin, wherephigh is the maximum price
the user will pay before terminating his connection altogether.
Users re-negotiate their resource requirements with a period
of 30 seconds in all the experiments. The total simulation time
for each experiment is 20,000 seconds.

We use a number of engineering and economic metrics
to evaluate our experiments. The engineering metrics include
the average traffic arrival rate at the bottleneck, the average
packet delay, the average packet loss rate, and the user request
blocking probability. The averages are computed as exponen-
tially weighted moving averages. The economic performance
metrics include the average user benefit (the perceived value
obtained by users based on their utility functions), the end-to-
end price for each service class.

VI. RESULTS AND DISCUSSION

In this section, we simulate the FP policy and CPA policy
under identical traffic conditions, and compare the relative
performance.

For ease of presentation, a single traffic parameter for the
AF class was varied in each experiment, and its effect on CPA
and FP policy performance was studied. We conducted four
groups of experiments. In the first and second groups, we vary
the load burstiness and average load respectively of the AF
class, and evaluate the improvements given by CPA over FP. In
the third experiment, incentive driven traffic migration between
classes is shown to improve the overall system performance.
In the last experiment, we show that access control to a
service class is critical in maintaining expected performance
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Fig. 4. System dynamics under CPA with increase in AF traffic burst index:
(a) price average and standard deviation of AF class; (b) variation over time of
AF. Performance metrics of CPA and FP policies as a function of burst index
of AF class: (c) average packet delay; (d) average packet loss; (e) average
traffic arrival rate; (f) average user benefit.

levels. Combining access control with user service adaptation
effectively reduces the request blocking rate.

A. Effect of Traffic Burstiness

We first compare the performance of FP and CPA policies
as the burst index of AF class increases, at a constant average
offered load of 60%.

Fig. 4 (a) shows that the average AF price increases under
CPA due to the increasing congestion price as the burst index
exceeds 0.4. In response, the AF traffic backs off. Fig. 4 (a)
also shows that the standard deviation in the AF price increases
with the burst index, indicating greater fluctuations in the price.
Fig. 4 (b) shows the dynamic variation of the AF class price
at three different levels of burstiness, confirming this trend.

Fig. 4 (c) and (d) show that under FP policy the average
packet delay and loss of the AF class increase sharply as the
burst index exceeds 0.4. As a result of the user traffic back-off
under CPA the delay and loss of AF class are well controlled
below the respective performance bounds of 5 ms and10−4

up to a burst index of 0.8. The average user benefit for CPA
(Fig. 4 f) decreases due to the reduction of bandwidth, but
remains higher than that of the FP policy. There is also a
smaller degradation in the performance of the BE class at high
burst indices. This appears to be because the BE class operates
under a relatively high load, and therefore borrows bandwidth
from the AF class when the AF class is lightly loaded. It can
no longer do so when the AF traffic burstiness increases.
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Fig. 5. System dynamics under CPA with increase in AF offered load: (a)
average and standard deviation of AF class price; (b) variation over time of
AF class price. Performance metrics of CPA and FP policies as a function of
AF offered load: (c) average packet delay; (d) average packet loss; (e) average
bottleneck traffic arrival rate; (f) average user benefit.

The results in this section indicate that the CPA policy
takes advantage of application adaptivity for significant gains
in network performance, and perceived user benefit, relative to
the fixed-price policy. The congestion-based pricing is stable
and effective.

B. Effect of Traffic Load

In this simulation, we keep the load and burstiness of EF
class and BE class and the burst index of the AF class at their
default values, and vary the offered load of AF class. The
average AF price under CPA is seen to increase with offered
load (Fig. 5 (a)). The standard deviation of the price shows
an increase to a certain level and then a decrease. Initially,
the price deviation increases due to the more aggressive
congestion control. At heavy loads, the increased multiplexing
of user demand smooths the total demand, and therefore
reduces fluctuations in the price. Fig. 5 (e) shows that the
actual arrival rate of AF under CPA backs off as users adapt
to the higher price.

Figs. 5 (c) and (d) show that the delay and loss of AF class
under FP quickly increases after the offered load increases
above 0.6 and approaches the provisioned capacity. As a result,
the performance bounds for AF class can no longer be met.
The high AF load also degrades BE performance. This is
apparently because BE operates at a high load (0.9) and tends
to borrow bandwidth from AF and EF when the latter classes
are lightly loaded.

Figs. 5 (c), (d), and (e) show that CPA coupled with user
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Fig. 6. Performance metrics of CPA and FP policies with traffic migration
between classes: (a) variation over time of AF class price; (b) ratio of AF
class traffic migrating through class re-selection; (c) average packet delay of
all classes; (d) average packet loss of all classes;

adaptation is able to control congestion and maintain the total
traffic load of a service class at the targeted level, and hence
allows the service class to meet the expected performance
bounds. Similar to our observation in Section VI-A, if the
nominal price of the system correctly reflect long-term user
demand, dynamic pricing driven service re-negotiation can
effectively limits short-term fluctuations in load. Usage price
of a class should be adjusted if persistent high user demand
exist for a service.

C. Load Balance between Classes

As seen from the previous section, the performance of
a class will suffer if the load into that class is too high.
In general, a user under CPA policy will select a service
class which provides it the highest benefit based on the price
and performance parameters of a class as announced by the
providers. The performance parameters are generally based on
long-term statistics. In this section, we assume that a user can
learn from network performance data received over a short
period, and select the class that would provide the highest
benefit based on the user utility function, network performance
statistics and service price, as discussed in Section II.

In this simulation, the EF and BE classes are loaded at 30%
and 80% respectively. When the load of AF class increases,
the performance of AF class degrades and congestion price
is invoked. In response, some applications switch from the
AF class to the EF class, which provides better performance
guarantee, or BE class, which allows it more bandwidth at a
cheaper price. As the result of this re-selection, the load is
better balanced across classes, and overall performance of the
system improves (Fig. 6 (c) and (d)). Fig. 6 (a) shows that
with load balancing in combination with adaptation within a
single class, the congestion price needs to be invoked much
less often than with adaptation within a class only, as in Fig.
5 (b). The proportion of migrating traffic is shown in Fig. 6
(b). We see even when a small portion of users select other
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Fig. 7. System dynamics under CPA with access control CPA as AF
offered load increases: (a) average and standard deviation of AF class price.
Performance metrics of CPA and FP policies with access control as a function
of AF offered load: (b) user requests blocking rate; (c) average packet delay;
(d) average packet loss.

service classes, the performance of the over-loaded class is
greatly improved.

D. Effect of Admission Control

We have seen that the performance of a class can not
be expected without any access control. In this section, we
compare the performance of FP and CPA for a network
with admission control for EF and AF class. The admission
threshold for each class is set to 1.5 times the target load to
increase the efficiency of the network.

With admission control, the performance of EF and AF
classes are well controlled (Fig. 7 c and d). However, due
to the burstiness of the traffic, the blocking rate under FP is
high even at a very small offered load (Fig. 7 b), and increases
almost linearly as the offered load increases beyond 0.6. With
congestion control and service contract re-negotiation, the
blocking rate of CPA is seen to be up to 30 times smaller than
that under the FP policy, and actually starts to decrease after
reaching a maximum at offered load 0.8. This is because the
price adjustment step is proportional to the excess bandwidth
above the targeted utilization and increases progressively faster
with offered load at higher loads, and the user bandwidth
request decreases proportionally with the price according to
the general utility function of Section II. Compared to Section
VI-B, the average price under CPA (Fig. 7 a) is bounded
to a smaller value at high offered loads, and has a smaller
fluctuation.

The results indicate that access control is important in
maintaining the expected performance of a class. However,
admission control by itself may lead to a high blocking rate
due to the network dynamics. By combining admission control
with user traffic adaptation, the network is more efficiently
used. With admission control, the dynamics of the network
price can also be better controlled, so that users have a more
reliable expectation of the price.

VII. R ELATED WORK

Microeconomic principles have been applied to vari-
ous network traffic management problems. The studies in
[24][25][26] are based on a maximization process to determine
the optimal resource allocation such that the utility (a function
that maps a resource amount to a satisfaction level) of a group
of users is maximized.

In [27][28][26][29], the resources are priced to reflect
demand and supply. Some of these methods are limited by
their reliance on a well-defined statistical model of source
traffic, and are generally not intended to adapt to changing
traffic demands. The study in [27] shows that compare to
traditional flat pricing, service-class sensitive pricing results
in higher network performance. Pricing for DiffServ has also
been studied in [13] through equivalent bandwidth. As has
been pointed out earlier, equivalent bandwidth may be too con-
servative for resource provisioning in a DiffServ environment,
and hence pricing based on equivalent bandwidth may not be
fair to the users. Also, it is not trivial for users to adapt their
requirements dynamically to meet their equivalent bandwidth
constraints.

Although there is some overlap between the cited work and
ours, our work is directed to studying and solving somewhat
different problems - developing a pricing model for DiffServ,
and studying DiffServ performance in a dynamic service and
price negotiation environment.

VIII. S UMMARY

In this work, we have developed a reasonably complete
DiffServ pricing model. We have proposed a price structure
for different service classes in DiffServ based on their relative
performance, long-term demand, and short-term fluctuations
in demand. We have integrated this pricing model into a
dynamic service negotiation environment in which service
prices increase in response to congestion, and users adapt to
price increases by adapting their sending rate and/or choice
of service. We have also modeled the demand behavior of
adaptive users based on a physically reasonable user utility
function.

Our simulation results show that the different DiffServ
classes provide different levels of service only when they
operate at different target utilization. In the absence of explicit
admission control, a service class loaded beyond its target
utilization (under either sustained or bursty loads) no longer
meets its expected performance levels. Under these conditions,
a congestion-sensitive pricing policy (CPA) coupled with user
rate adaptation is able to control congestion and allow a
service class to meet its performance assurances under large
or bursty offered loads. Users see a reasonably stable service
price and are able to maintain a very stable expenditure.
Allowing users to migrate between service classes in response
to price increase and network performance further stabilizes
the individual service prices while maintaining the system
performance.

When admission control is enforced beyond a threshold
load for each class, performance bounds can be met with a
fixed service price. However, in this case, the CPA policy
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provides a greatly reduced connection blocking rate at high
loads by driving down individual bandwidth requests, resulting
in a higher overall user satisfaction. Compared to the CPA
policy without admission control, the service price is further
stabilized in this case.

In this paper, we assume that users do not have the option
of choosing a different path or provider, reflecting current net-
work reality. However, pricing in the presence of competition
or alternative paths remains an interesting open issue.
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